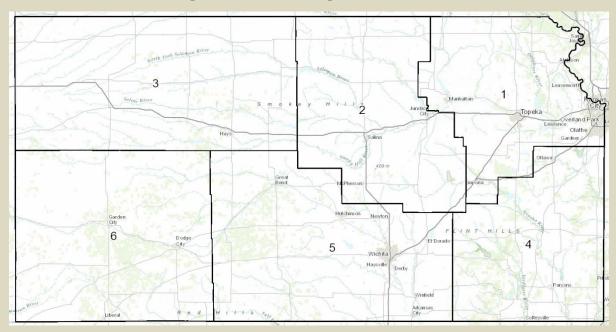
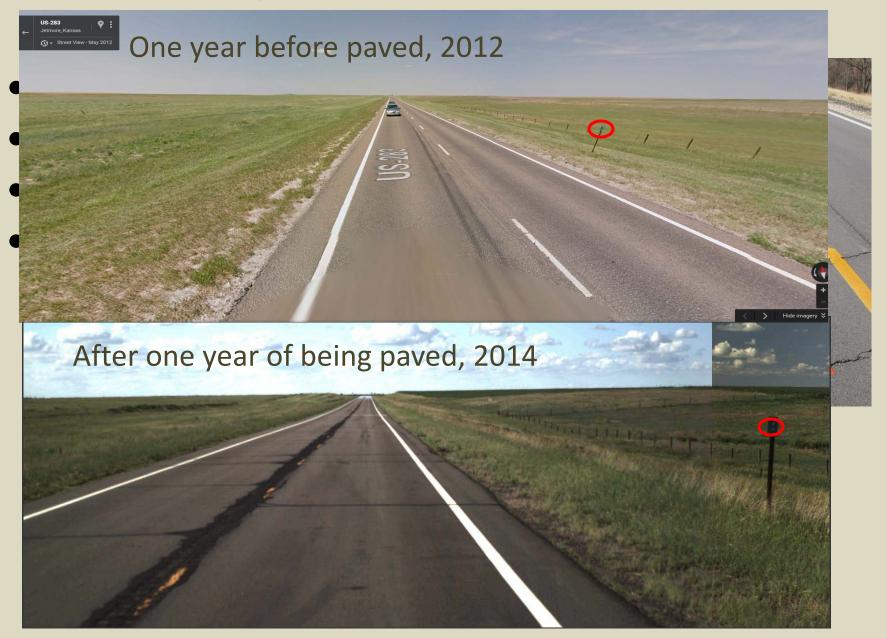


Asphalt at Kansas DOT


- AC binders & Marshall prior to SHRP
- Issued Notice: Fiscal year 1997 all mixes contain PG binders
- October 29, 1996: Technical Advisory (PG into Spec.)
- Only Virgin mixes until 2007 when RAP was reintroduced
- Now: RAP, RAS, WMA, Rejuvenators all potentially in a mix

- AC (Bituminous) Overlay over Existing CRCP
- AC (Bituminous) Overlay over Existing Jointed Concrete Pavement
- Bonded PCC Overlay on PCC Pavement
- Continuously Reinforced
 Concrete Pavement (CRCP)
- Conventional Asphalt Concrete (Bituminous)
- ___ Jointed Plain Concrete Pavement (JPCP)
- ___ Jointed Reinforced Concrete
 Pavement (JRCP)
- Other (includes whitetopping)



KDOT Asphalt Specifications

- Binder is not a separate pay item, mix paid by ton
- KDOT no longer develops mix designs
- Contractors develop mix design to meet KDOT specifications
- District Engineers approve the mix design
- Mix designs are verified at District Laboratories
- Preapproval on aggregate sources, Specific Gravities published
- RAP is sourced from DOT only and processed according to spec

So, where are we now?

Change the Volumetric Properties

Idea driven by CO DOT's work in the 1990's

Concept:

- Either Air Voids or Design Revolutions would change
- Overall goal is to get more binder in the mix

Lower Revolutions:

- Goal is to improve durability
- Reduce permeability
- D/B to limit dust
- Always on the border of spec's

Reduced Air Voids:

- Similar concept to low rev's
- Bump Nini +0.5 (≤ 91.5 at 7 gyrations)
- Increased density in field
- Hamburg requirement (10,000 @ 12.5mm)

4%	Air	Air	3%	
5%	Binder	Binder	+5%	
91%	Aggregate	Aggregate	+91%	

What Kansas DOT Tried (...and is still working on)

First project in 2007, D3, not much changed

- Ndes = 75
- Nini ≤ 91.0 @ 7 gyr
- Va = 3.5%

Next project in 2009, lower Ndes, all borderline on specs.

- Ndes = 60
- Nini ≤ 91.0 @ 7 gyr
- Va = 3.5%

In 2010, the 3.0% air void projects began

KDOT has put down roughly 70 3% air void projects throughout the state, except District 2

A typical 3% mix:

- 3.0% design air voids
- Nini ≤ 91.5 @ 7 gyrations
- Ndes = 75 gyrations
- RAP limit at 25% or blending chart
- Hamburg (10,000 @ 12.5mm)
- Cold mill, inlay/overlay
- District 3 is the lead, rarely "standard" pavement
- Districts are taking to the method differently
- Some Districts have pushed ahead with more projects
- Still no project in District 2

Special Provision Issued for Project

- Av required at Ndes
- Nini, Ndes, Nmax set
- Tighten Av Single Test Value
- Adjust Av pay adjustments
- Hamburg requirement
- RAP requirements
- Otherwise, typical design sheet

Blending Chart or Given Range

Use the material milled from the project as the RAP source. Utilizing the RAP information below develop a blending chart using the KDOT supplied blending chart spreadsheet. Provide a HMA mix that results in the low side of the PG binder grading colder than -23°C. If no RAP is used then a PG64-22 binder may be used.

TABLE 2: RAP INFORMATION FOR BLENDING CHART

RAP Sample Location	RAP PG High Grade	RAP PG Low Grade	% AC
106 KA-4083-01	83°C	-7°C	6.9

KANSAS DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION TO THE STANDARD SPECIFICATIONS, EDITION 2007

SECTION 602

MODIFIED REQUIREMENTS – ASPHALT MIXTURES

Project Number: 16-75 KA-3714-01

The asphalt mix listed in TABLE 1 has the following project mix requirements. [Reference TABLE 602-1, COMBINED AGGREGATE REQUIREMENTS].

Page 600-6, TABLE 602-1, delete note 4 and replace with the following:

The target air voids (V₂) for any mix designation shall be 3.0% at N_{des} gyrations.

Page 600-6, TABLE 602-1, delete note 6 and replace with the following:

The level of compaction of the mix when compacted to N_{imi} gyrations shall be less than the percent of the G_{mm}
shown in the Contract Special Provision, and when compacted to N_{max} gyrations shall be a maximum of 98.5% of
the G_{mm}.

Page 600-14, TABLE 602-12, change the Single Test Value for Air Voids @ Ndes gyrations to ± 1.0%.

Page 600-23, 602.9d(1), change the upper specification limit, USL, for V_a to 4.00% and the lower specification limit, LSL, for V_a to 2.00%.

Page 600-23, TABLE 602-16, change the Upper Specification Limit, USL, to 4.50% and change the Lower Specification Limit, LSL, to 1.50%

TABLE 1: PROJECT MIX REQUIREMENTS

TABLE I: PROJECT MIA REC				
MIX CRITERIA	SR-12.5A (PG64-22) ⁽¹⁾			
AGGREGATE:				
Coarse Angularity (min.%)	75			
Uncompacted Voids-Fine (min. %)	42			
Sand Equivalent (min. %)	40			
Reclaimed Asphalt Pavement (RAP) (max. %)	25			
RAP Bulk Specific Gravity	2.521			
COMPACTION REVOLUTIONS:				
N _{ini} (level of compaction)	7 (⊴91.0)			
N _{des}	75			
N _{max}	115			
MIX:				
VFA	65 - 82			
Hamburg Wheel Test Requirements (Minimum # of Passes @ 12.5 mm Rut Depth)	10,000 ⁽²⁾			

(1) Between 0 and 25% RAP may be used. Use the material milled from the project as the RAP source. The required binder and name shown below are based on the percent RAP used in the contract. The mix will be paid for at the bid price of SR-12.5A (PG64-22).

 Percent RAP
 Name

 0
 SM-12.5A (PG64-22)

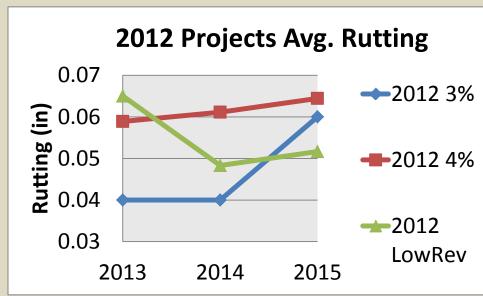
 1 - 15
 SR-12.5A (PG64-22)

 16 - 25
 SR-12.5A (PG58-28)

Include the Hamburg Wheel Test results when submitting the Job Mix Formula to the District Materials Engineer for review and approval. The Hamburg Wheel Test will be completed by Kansas State University.

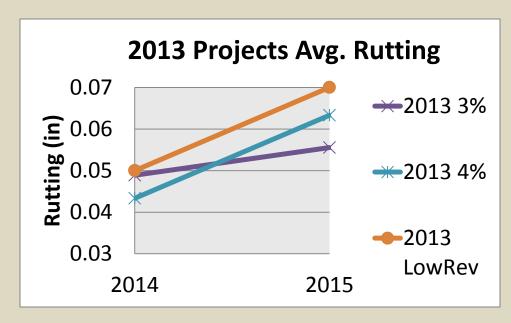
For information only, the 20 year design lane traffic is 0.8 million ESALs. 11/10/14 C&M (BTH)

So, did we get more binder?

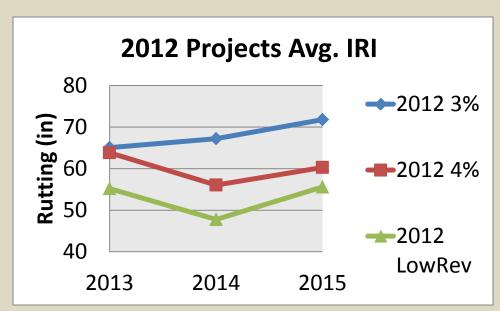

Yes and no.

- District Dependent on quantity increase
- Aggregate source driving contents (East vs. West)
- Limited amount of projects from Districts (other than D3)
- Need to determine RAP amounts, aggregate differences

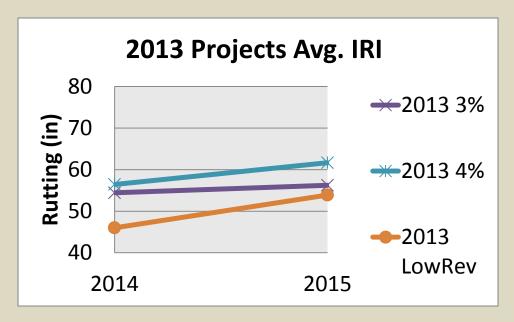
DIST	Mix	Air V	oids/	% Bi	nder	No. of
ופוט	ST Mix Avg Stde		Stdev	Avg	Stdev	Prjs
	3%	3.43	0.63	5.77	0.18	3
1	4%	4.10	0.62	5.21	0.19	2
	diff	-0.67	0.01	0.56	-0.01	
2	4%	3.77	0.63	5.49	0.18	2
	3%	3.38	0.78	5.08	0.19	25
3	4%	4.34	0.69	4.79	0.25	17
	diff	-0.96	0.10	0.29	-0.06	
	3%	3.60	0.54	6.16	0.19	4
4	4%	3.43	0.68	5.42	0.52	1
	diff	0.18	-0.14	0.73	-0.33	
	3%	3.16	0.59	5.26	0.22	1
5	4%	4.21	0.66	5.29	0.29	7
	diff	-1.05	-0.08	-0.04	-0.06	
	3%	3.14	0.59	5.16	0.18	1
6	4%	3.96	0.62	5.03 0.21		4
	diff	-0.83	-0.04	0.13	-0.04	

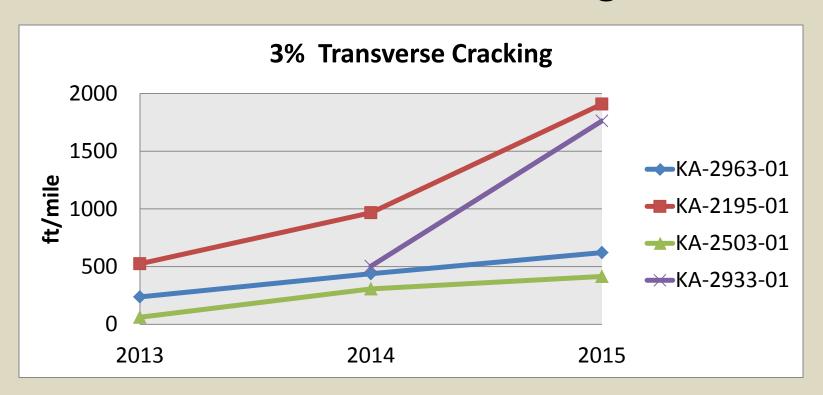


Performance - Rutting



- Still a little early to really know
- At least equivalent performance
- Minimal rutting so far


- Minimal rutting seen
- Rate not consistent,
 better in 2013 than 2012


Performance – Ride Quality

- Still a little early to really know
- At least equivalent performance

Performance – Cracking

- Looking acceptable so far
- Still not solving thermal/reflective cracking
- Equivalent to standard mixes

Pay Factors for Air and Density

	3%	4%
Air Avg	0.024	0.021
Stdev	0.017	0.023
Dens Avg	0.035	0.021
Stdev	0.012	0.016

- Appears air and density is being met
- Pay factors appear to be higher for the 3% jobs
- Deviation appears tighter on the 3% jobs

Further Analysis Needed:

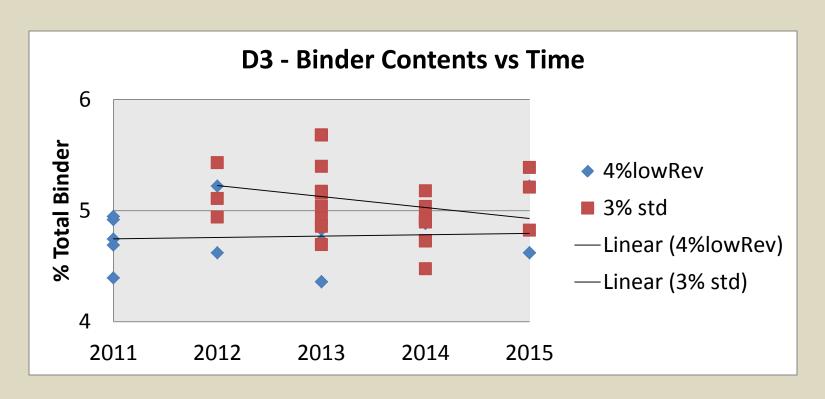
Are the bids changing because of different requirements? Are pay factors driving the bid any differently?

Other Items

Joint Density

• Doesn't appear to be common or regular

Shoulder Deterioration


Cracking stops at mainline

Conclusions

- Increases binder content, but is it enough?
- Performance appears adequate, time will tell
- Mix can still be "tweaked" to cut binder and increase aggregate

Many people helped to bring these projects to see the light of day. As well, many people assisted in gathering the data for this presentation. The following are recognized:

- Jeff Stewart, District Engineer, District 3
- Rick Kreider, Bureau Chief, Materials & Research
- Travis Scott, Dist. Const. & Materials Eng., District 3
- Blair Heptig, Field Engineer, Const. & Mat.
- Scott Ashwill, CMS Materials Coordinator
- Alan Vitt, CMS Applications Developer
- Zandra Myrick, Management Analyst
- Rick Miller, Pavement Management Engineer
- Cliff Hobson, Adv. Technology Research Engineer

Thank you.

KDOT Specifications

	TABLE 602-1: COMBINED AGGREGATE REQUIREMENTS										
Non Man		Percent Retained - Square Mesh Sieves									
Nom. Max.				it Ketain	_	are Mes	n Sieves			Min.	\mathbf{D}/\mathbf{B}
Size Mix	1 ¹ /2"	1"	3/ ₄ "	1/2"	³ / ₈ "	No. 4 No. 8		No. 16	No. 200	VMA	Ratio
Designation										(%)	
SM-4.75A				0	0-5	0-10		40-70	88.0-94.0	16.0	0.9 - 2.0
SR-4.75A			0	0-2	0-5	0-10		40-70	88.0-94.0	16.0	0.9 - 2.0
SM-9.5A				0	0-10	10 min.	33-53		90.0-98.0	15.0	0.6 - 1.2
SR-9.5A			0	0-2	0-10	10 min.	33-53		90.0-98.0	15.0	0.6 - 1.2
SM-9.5B				0	0-10	10 min.	53-68		90.0-98.0	15.0	0.8 - 1.6
SR-9.5B			0	0-2	0-10	10 min.	53-68		90.0-98.0	15.0	0.8 - 1.6
SM-9.5T				0	0-10	10 min.	53-68		90.0-98.0	15.0	0.8 - 1.6
SR-9.5T			0	0-2	0-10	10 min.	53-68		90.0-98.0	15.0	0.8 - 1.6
SM-12.5A			0	0-10	10 min.		42-61		90.0-98.0	14.0	0.6 - 1.2
SR-12.5A		0	0-2	0-10	10 min.		42-61		90.0-98.0	14.0	0.6 - 1.2
SM-12.5B			0	0-10	10 min.		61-72		90.0-98.0	14.0	0.8 - 1.6
SR-12.5B		0	0-2	0-10	10 min.		61-72		90.0-98.0	14.0	0.8 - 1.6
SM-19A	_	0	0-10	10 min.			51-65		92.0-98.0	13.0	0.6 - 1.2
SR-19A	0	0-2	0-10	10 min.			51-65		92.0-98.0	13.0	0.6 - 1.2
SM-19B		0	0-10	10 min.			65-77		92.0-98.0	13.0	0.8 - 1.6
SR-19B	0	0-2	0-10	10 min.			65-77		92.0-98.0	13.0	0.8 - 1.6

- The requirements for Coarse Aggregate Angularity (CAA); Fine Aggregate Angularity (FAA); Sand Equivalent (SE);
 Gyratory compaction revolutions N_{ini}, N_{des}, N_{max}, N_{ini} level of compaction and VFA shall be as shown in the Contract Special
 Provisions for each mix designation.
- 2. The flat and elongated particles in the combined coarse aggregate shall not exceed 10% for the total sample.
- 3. The maximum percent moisture in the final mixture slan not exceed 0.5 for any mix designation.
- The target air voids (V_a) for any mix designation shall be 4.0% at N_{des} gyrations.
- 5. The minimum tensile strength ratio (%TSR) shall be 80% for any mix designation.
- 6. The level of compaction of the mix when compacted to N_{ini} gyrations shall be less than the percent of the G_{nm} shown in the Contract Special Provision, and when compacted to N_{max} gyrations shall be a maximum of 98.0% of the G_{nm} .

Typical Project: Target: 4% design air voids

SUPERPAVE GYRATORY COMPACTION EFFORTS									
DESIGN ESALs (millions)		TRAVELWAY							
	Ni _{ni}	N_{des}	N_{max}						
<0.3	6	50	75						
0.3 to <3	7	75	115						
3 to <30	8	100	160						
≥30	9	125	205						
		SHOULDER							
A*	6	50	75						
B*	**	**	**						
	•	•	•						

^{*}At the contractor's option A or B may be used.

Air Voids = Calculate from Gmm and Gmb, Run at the Pbr

TA	BLE 602-2: MI	X PROPER	RTIES
Property	Abbreviation	Test Method	Additional Information
Air Voids	V_a	KT-15 &	Calculated from G _{mm} and G _{mb} .
TH VOIGS	' a	KT-58	Run at the P _{br} .
Recommended Percent Asphalt	P_{br}		Produce a mix with a V_a of 3.5% to 4.5%.
Theoretical Maximum Specific Gravity	G_{mm}	KT-39	Rice Test.
Dargant Tangila Strangth Datio	0/TCD	VT 56	Run test at P _{br} or at 0.3% to 0.5% less
Percent Tensile Strength Ratio	%TSR	KT-56	than P _{br}
Sand Equivalent	SE	KT-55	
Bulk Specific Gravity of HMA	G _{mb}	KT-15	Compacted Mix Property.
	%G _{mm} @ N _{ini}		Use G _{mm} value from KT-39.
Percent G _{mm} at N _{ini} and N _{des} and N _{max}	%G _{mm} @ N _{des}	KT-15	Calculated from Gyratory Compaction
	%G _{mm} @ N _{max}		height data, G _{mm} , and G _{mb} .
Voids in Minaral Appropria	VMA	KT-15 &	Calculated from C. G. D.
Voids in Mineral Aggregate	VIVIA	KT-6	Calculated from G_{mb} , G_{sb} , P_b .
Voids Filled with Asphalt	VFA		Calculated from VMA and Va @ N _{des} .
Coarse Aggregate Angularity	CAA	KT-31	
Fine Aggregate Angularity	FAA	KT-50	

Formulas for calculations are in the Superpave Volumetric Mixture Design and Analysis Handbook.

^{**}Use traveled way design traffic properties for B.

Required Submittals

		TA	BLE 602-	3: MATE	RIAL SUB	MITT	ALS							
St	ubmittal	Q	Quantity Description			cription Additional Information								
Aggregate:	€~~ I/T 15	2 (Samuel and		K inak Dha	. 6			LL M	ماسيدان سا	£			
				April 2016	LETTING									
Aggregate.			PRO		ECIFIC GRAVIT	IES								•
Binder for	Producer	CMS ID Producer	Legal Description	Location	Products	Bulk Dry (Gsb)	Saturated Surf Dry	Apparent	Percent Absorp	Date Modified or Verified	Chat or SSG	Latitude	Longitude	
Binder for	Allied Inc	811604	S25 T15S R19W	Ellis Co		2.579	2.609	2.658	1.2	November 1, 2015	S			I
Diffuer for	Alsop	811105	S27 T05S R03W	Cloud Co.		2.538	2.563	2.603	1.0	July 1, 2015	S			I
Each Aggr	Alsop	811107	S27 T13S R01E	Dickinson Co.		2.556	2.611	2.705	2.2	December 1, 2013	S			1
racu waan	Alsop	811114	S05 T04S R04W	Republic Co.		2.518	2.559	2.627	1.7	November 1, 2015	S	39.73909		
	Anchor Stone (WRSW)	836402	S34 T28N R32W	Jasper Co. MO	3/4"	2.532	2.584	2.672	2.1	February 1, 2016		37.10327	94.40710	4
	APAC (FRLYARG)	804008	S07 T16S R25E	Miami Co	-1/2, -3/4	2.471	2.552	2.688	3.3	January 1, 2015	-	-		4
T T	APAC (FRLYARG)	804008	S07 T16S R25E	Miami Co	-5/16	2.402	2.515	2.709	4.7	January 1, 2015		20 00405	05 00000	1
Uncompac	APAC Central (DEWY) APAC Kansas	809101 810903	S25 T27N R13E S05 T27S R24W	Washington Co. OK Ford Co.	-3/4"	2.644 2.578	2.680 2.602	2.710 2.641	1.3	September 1, 2014 September 1, 2013	S	36.80405	95.86936	1 _
-	APAC Kansas APAC Kansas	826003	S14 T12S R08W	Lincoln Co.	CS-1	2.578	2.630	2.674	1.0	March 1, 2013	5	+		† _
	APAC Kansas APAC Kansas (CPCK)	803705	S10 T14S R23E	Johnson Co.	-3/4"5/15"	2.532	2.599	2.074	2.7	July 1, 2015		38.85231	94.84701	t _
C	APAC Kansas (CPCK)	803903	S16 T14S R23E	Johnson Co.	1014,10110	2.575	2.627	2.717	2.0	October 1, 2014		38.83518		₫ –
Gyratory F	APAC Kansas (STNR Ledge)	803705	S10 T145 R23E	Johnson Co.	-3/4"	2.574	2.626	2.715	2.0	October 1, 2014		38.85297	94.84856	đ
 ,	APAC Kansas (STNR)	803903	S16 T14S R23E	Johnson Co.		2.570	2.621	2.704	2.0	October 1, 2015		38.83191		457
	APAC-Shears	801934	S21 T23S R05W	Reno Co.		2.560	2.583	2.633	0.9	August 1, 2015	S			11
	APAC-Shears (HRFD)	801935	S02 T21S R13E	Coffey Co.	-3/4"	2.566	2.621	2.713	2.1	May 1, 2015				†
	Associated	819904	S12 T30S R01E	Sumner County		2.557	2.581	2.621	0.9		S			†
	Associated	819905	S14 T26S R01W	Sedgwick County		2.554	2.578	2.618	1.0	January 1, 2016	S			1 -
	Bayer Const Co.	801830	S08 T13S R05E	Geary Co.		2.546	2.611	2.715	2.4	November 1, 2015				1
	Bayer Const. Co. (TRKO)	802449	S03 T11S R09E	Riley Co.		2.515	2.584	2.703	2.8	November 1, 2015				1-
	Beyer Crushed Rock Co (BFLS)	806901	S26 T45N R33W	Cass Co. MO		2.573	2.619	2.697	1.8	June 1, 2015		38.69476		
	Bingham (Sooner Pile)	821812	S16 T29N R23E	Ottawa Co. OK		2.525	2.572	2.648	1.8	November 1, 2014	С	36.99744	94.82679	4
	Bladen Sand	823802	S014 T02N R16W	Franklin Co. NE		2.581	2.597	2.619	0.6	February 1, 2015	S			Ι
	Blue River Sand	805404	S25 T04S R06E	Marshall Co.		2.559	2.584	2.624	1.0	November 1, 2014	S] -
	Carder	823503	S30 T22S R44W	Prowers Co. CO	SSG, CG	2.585	2.610	2.651	1.0	June 1, 2015	S			de
	Carder	823513	S19 T24S R39W	Hamilton CO		2.553	2.587	2.643	1.3	June 1, 2011	S	38.03351		4 -
	Carthage Crushed	848001	S29 T29N R31W	Jasper Co. MO		2.636	2.660	2.699	0.9	October 1, 2015		37.20735	94.32763	4
	Concrete Enterprise	813403	S04 T28S R13W	Pratt Co.		2.559	2.590	2.641	1.2	May 1, 2013	S			1 =
	Cornejo & Sons	819304	S02 T27S R01W	Sedgewick Co.	-	2.533	2.561	2.605	1.1	June 1, 2015	S	-		Įt.
	Cornejo & Sons	838202	S06 T32S R03E	Cowley Co.		2.562	2.586	2.625	0.9	April 1, 2012	S	-		ي إ
	Cornejo Mtls	820103	S23 T26S R01W	Sedgewick Co.	SSG	2.545 2.551	2.572	2.617	1.1	May 1, 2015	S	+		30
	Cornejo Mtls	820104 820105	S34 T28S R01E S14 T31S R10E	Sedgewick Co. Elk Co.	SSG CS1A, CS1	2.551	2.580 2.563	2.626 2.700	1.1 3.2	October 1, 2012 November 1, 2015	S	+		+ 😜
	Cornejo Mtls	820105 847901	S14 1315 R10E S28 T22S R46W		COTA, COT	2.482	2.563	2.700	3.2 1.1		_	38.10196	102.58315	16
	Crossfire Aggregates Dartmouth Sand	847901	S28 1225 R46W S33 T19S R12W	Prowers Co. CO Barton Co.		2.569	2.596	2.628	0.9	November 1, 2014 August 1, 2012	S	30.10196	102.50315	†
	Deweese	825001	S17 T01N R07W	Nuckolls Co. NE	SSG	2.576	2.589	2.623	0.7	November 1, 2015	S	+		t
	Dodge City Sand	813102	S32 T26S R25W	Ford Co.		2.550	2.580	2.630	1.0	April 1, 2016	s	+	-	† T
	Dolese Dolese	809001	S36 T04N R12W	Comanche Co. OK		2.665	2.685	2.718	0.8	February 1, 2016	-	34,77073	98.40528	<i>i</i> †
	Dolese	809002	S08 T01S R01E	Davis Co. OK		2.664	2.683	2.716	0.7	February 1, 2016		34.48068		j 🗖
	Dolese	809402	S32 T06N R15W	Kiowa Co. OK		2.706	2.723	2.753	0.6	February 1, 2016		34.94803		<i>i</i> †
	Eastern Colorado Agg	833301	S18 T23S R42W	Holly, Prowers Co, CO		2.578	2.607	2.654	1.1	August 1, 2015	s			1
	Flint Rock Products Pile # 2	822503	SW 1/4 S29 T29N R23E	Ottawa County, OK		2.553	2.589	2.650	1.4	June 1, 2015	C			1
	Granite Mountain	838701	S26 T01N R12W	Sweet Home, AR		2.600	2.615	2.641	0.6	November 1, 2014				1
	Gravel and Concrete	832701	S15 T22S R07W	Reno Co.		2.551	2.580	2.620	1.1	April 1, 2014	s			Ī
	Hamm	800976	S15 T14S R04E	Dickinson Co.		2.453	2.533	2.665	3.3	January 1, 2016				1
	Hamm (EVCK)	800977	S09 T11S R17E	Jefferson Co.		2.540	2.604	2.714	2.5	January 1, 2016				Ī
	Hamm (NEVA)	800950	S03 T07S R10E	Pottawatomie Co.		2.437	2.515	2.644	3.2	July 1, 2015				I
	Harris (OZMIK)	000077	C00 T110 D17F	Infforman Co		2.040	2 872	2 700	2.0	Echnisos 1 2010		1	1	1

QA/QC at KDOT

		• • •						\neg			
DIVISION 600								4			
HMA (Plant Mix) Sec. 602, 603, 611 & 1103											
Individual Aggregates	Sieve Analysis of Aggregate	KT-2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				7				
	(1%, 0.1% for No. 200 [75 μm]		for each indi	vidual aggregate.		_	00 Mg) of HM	A			
	Clay Lumps and Friable Particles in	HMA (Blant	Mix continued)		Δ	c remire	4				
	Aggregate (0.1 g or 0.01% of mass)	Sec. 602, 603	,								
	Shale or Shale-Like Materials in	HMA Mixtu	es (continued)	Air Voids			KT-15,		1 per sublot.	j	1 per lot. [Compact split
	Aggregate			$(V_a = 0.01\%; G_1$	$_{mm}$ & $G_{mb} = 0$	0.001)	KT-39,		(See code n for G _{mm})		sample on KDOT Gyratory
	(0.1 g or 0.01% of mass)						KT-58, &				 1 per week or every
	Sticks in Aggregate						SF Manual				15,000 TONS (15,000 Mg)]
	(0.01% of mass) Uncompacted Void Content of Fine			Binder Content	(by ignition)		KT-57		1 per sublot.	j	1 per lot.
	Aggregate			(0.1 g or 0.01%	of mass)						
	(0.1%)			Mix Gradation (after ignition	ı)	KT-34		1 per sublot.		1 per lot.
CONSTRUCTION OR	TESTS REQUIRED			(0.1 g or 0.01%	of mass)						
MATERIAL TYPE	(RECORDED TO)			Moisture Damas	ge to Mix (M	odified	KT-56 d		1 on first lot then 1 per week		1 during the first 5000
2015 Std. Spec. (SS 2015)	(RECORDED 10)			Lottman)			1		or every 10,000 TONS		TONS (5000 Mg) of HMA
•		Reclaimed A	sphalt Pavement	Binder Content	in RAP (by i	gnition)	KT-57		1 during the first lot then 1 per	i	1 during the first lot then 1
DIVISION 600 (continued)		(RAP)		(0.1 g or 0.01%		,			1000 TONS (1000 Mg) of	ľ	per 4000 TONS (4000 Mg)
HMA (Plant Mix) continued		- (icar)		(0.1 g 01 0.0170	01 111100)		1		RAP.		of RAP.
Sec. 602, 603, 611 & 1103				RAP Gradation	(after ignitio	n)	KT-34		1 per 1000 TONS (1000 Mg)		1 during the first 5000
Individual Aggregates (continued)	Uncompacted Void Content of	-			(0.1 g or 0.01% of mass)				of RAP.		TONS (5000 Mg) of HMA
Individual riggiegates (continued)	Coarse Aggregate					KT-11		1 per lot.		` ~ ~	
	(0.01%)			(0.1 g or 0.01%	of mass)				-		
Mineral Filler Supplement	Sieve Analysis of Aggregate	Recycled Asp	halt Shingles (RAS)	Binder Content	in RAS (by i	gnition)	KT-57		1 during the first lot then 1 per	i	1 during the first lot then 1
	(1%, 0.1% for No. 200 [75 μm]			(0.1 g or 0.01%	(0.1 g or 0.01% of mass)				1000 TONS (1000 Mg) of		per 4000 TONS (4000 Mg)
	sieve, of mass)								RAP + RAS.		of RAP + RAS.
	Plasticity Tests			RAS Gradation	RAS Gradation (after ignition)		KT-34		1 per 1000 TONS (1000 Mg)		1 during the first 5000
	(0.01 g or 0.1% of mass)			(0.1 g or 0.01%	of mass)				of RAP + RAS.		TONS (5000 Mg) of HMA
Combined Aggregate	Coarse Aggregate Angularity			Percent Moistur			KT-11		1 per lot.		
	(Determination of Crushed Particles			(0.1 g or 0.01%	of mass)						
	in Crushed Gravel)	HMA (Plant	Mix continued)	-			-				
	(0.1% of mass)	Sec. 602, 603	, 611 & 1103								
	Uncompacted Void Content of Fine	Completed F	load Work	Field Density -	Cores or Nuc	lear	KT-15 or i		10 tests per lot.	i	5 companion tests per lot.
	Aggregate (0.1%)	- Complete and		Density Gauge			KT-32		To touch put tou	1	The second secon
	Sand Equivalent Test	Field Density	Tests	(Gmb = 0.001;	0 1 115/ 0 3 [1 1	rg/m³1 or					
	(1%)		Nuclear Density	0.01% of G _{mm})	0.110/II [1 B	g/m J OI					
	Flat or Elongated Particles	ш`	HMA roadway or	5.017001 G _{mm})							
	(1%)		truction greater than o	or							
	Moisture Tests	equal to 1.5 is	nches)				1				
	(0.1 g or 0.01% of mass)		•								
Asphalt Material	Sampling	(Use approve	d rolling procedure ar	d Field Density -N	Nuclear Dens	itv	KT-32 i		10 Nuclear Gauge readings per		
			ity Gauge on all HMA						lot		
			noulder construction	$(G_{mb} = 0.001; 0)$	1 1b/A³ [1 ba	r/m ³ l or					
HMA Mixtures	Percent Moisture in Mixture	less than 1.5		0.01% of G _{mm})	IO/It [I K	, m j 01			Verify Approved Rolling		
	(0.1 g or 0.01% of mass)		,	0.01 /6 01 G _{mm})					Procedure every 2 hours		
		4									
				Profilograph			KT-46		2 tracks per 12 ft (3.7 m) of		At the Engineer's discretion.
									width for the full length of the		
									project.		

TABLE 602-9: NOMINAL COMPACTED THICKNES							
Lift	Maximum Nominal Compacted Thickness						
Surface	2 inches						
Base	4 inches						

TABLE 602-8: JOINT DENSITY REQUIREMENTS								
Nuclear Gauge Readings Requirement								
Interior Density minus Joint Density	≤ 3.0 lbs./cu. ft.							
0	OR							
Joint Density	≥ 90.00% of G _{mm}							

TABLE 602-7: SEGREGATION AND UNIFORMITY OF DENSITY CHECK				
Mix Designation	Maximum Density Range (highest minus lowest)	Maximum Density Drop (average minus lowest)		
All	4.4 lbs./cu. ft.	2.2 lbs./cu. ft.		

TABLE 602-12: SPECIFICATION WORKING RANGES (QC/QA)						
	Tolerance from JMF					
Mix Characteristic	Single Test Value	Plot	4 Point Moving Average Value	Plot		
Binder Content	±0.6% *		±0.3%	*		
	Tolerance	for Sp	ecification Limits			
Mix Characteristic	Single Test Value	Plot	4 Point Moving Average Value	Plot		
Gradation (applicable sieves in TABLE 602-1)	N/A	*	zero tolerance	*		
Air Voids @ N _{des} gyrations	±2.0%	*	N/A			
Voids in Mineral Aggregate (VMA)	1.0% below min.	*	zero tolerance	*		
Voids Filled with Asphalt (VFA)	N/A		zero tolerance	*		
Course Aggregate Angularity (CAA)	zero tolerance		N/A			
Sand Equivalent (SE)	zero tolerance		N/A			
Fine Aggregate Uncompacted Voids (FAA)	zero tolerance		N/A			
%Tensile Strength Ratio (%TSR)	zero tolerance	*	N/A			
Density @ N _{ini} and N _{max}	N/A		zero tolerance			
Dust to Effective Binder (D/B) Ratio	zero tolerance	*	zero tolerance	*		

Plot data according to subsection 106.4.

Indicate the specification working range limits for the 4-point moving average results with a green ink solid line.

П	TABLE 602-10: DAILY PRODUCTION VS NUMBER OF SUBLOTS AND TEST REQUIREMENTS					
	Daily Production (tons)	Number of Sublots	No. of Cores or Nuclear Density Tests**	No. of Verification Cores or Nuclear Density Tests**		
П	0-599	3*	6*	3*		
П	600-999	4*	8*	4*		
	1000 or more	5	10	5		

^{*}Minimum number for mixes with a specified thickness of 1½ inches or greater. The Contractor may choose to obtain the number required for 1000 or more tons. If the Contractor chooses to test 5 sublots (10 tests), KDOT will obtain 5 verification tests.

^{**}For mixes with a specified thickness less than 1½ inch: Verification testing may be performed, but is not required. Additional testing may be performed by the Contractor. A minimum of 10 tests are required.

TABLE 602-11: MAXIMUM VARIATION OF THE SURFACE				
Length (feet)	Maximum Variation of the Surface (inches)			
10	3/16			
25	5/16			

TABLE 602-15: DENSITY PAY FACTORS FOR SPECIFIED THICKNESS ⁴					
Specified Thickness →	≥2"	≥1½"			
	All	Continuous Action	No Continuous Action ⁶		
% of G _{mm} Average of 10 Density Tests ¹	Pay Factor ²		Pay Factor ²		
93.0% or greater	1.040		1.040		
92.0 to 92.9%	A1		A1		
91.0 to 91.9%	1.000		1.000		
90.0 to 90.9%	A2		1.000		
89.0 to 89.9%	0.840 or Remove ³		A3		
less than 89.0%		0.840 or Remove ⁵	0.840 or Remove ³		

For low daily production rates less than 1000 tons, or when the Engineer's verification tests are to be used for asphalt density pay determination, the lot sample size is as determined in TABLE 602-11.

Based only on density average of lot

TABLE 602-13: MINIMUM HMA PLACEMENT TEMPERATURES								
Paving Course	Thickness (inches)	Air Temperature (°F)			Air Temperature Surface Temperatur (°F) (°F)			rature
		HMA	WMA Foam	WMA Chem	HMA	WMA Foam	WMA Chem	
Surface	All	50	45	40	55	50	45	
Subsurface	<1.5	50	45	40	55	50	45	
Subsurface	≥1.5 and < 3	40	35	30	45	40	35	
Subsurface	≥3	30	30	30	35	32	32	

TABLE 602-14: SEGREGATION PROFILE CHECKS FOR INCREASED SUBLOT SIZE				
Mix Designation Maximum Density Range (highest minus lowest) Maximum Density Drop (average minus lowest)				
All	3.1 lbs./cu. ft.	1.9 lbs./cu. ft.		

Equation 1: $Q_{LD} = \frac{\overline{X} - LSL}{S}$

 \overline{X} is the average measured percent of G_{nm} of all samples within a lot rounded to hundredths. LSL is the lower specification limit for density and is defined as 91.00% of G_{nm} for traveled way plan thickness 2 inches and less and 92.00% of G_{nm} for traveled way plan thickness greater than 2 inches.

PWL for density also

602 - HOT MIX ASPHALT (HMA) CONSTRUCTION (Quality Control/Quality Assurance (QC/QA))

S is the standard deviation of the measured density of all samples within a lot and is calculated using equation (4) in Section 5.17.09, Part V, rounded to hundredths.

For gradations, as a minimum, plot the No. 4, 8, 30 and 200 sieves.

Plot G_{mm} to third decimal point.

Indicate Job Mix Formula (JMF) and specification working range limits for single test results on the control charts using a green ink dotted line.